

CHANDIGARH ENGINEERING COLLEGE-CGC Department of Applied Sciences

Assignment No 1 Max. Marks: 30

Subject and Subject code: Mathematics –I/ BTAM--101-23

Semester 1^{st} (CSE/IT/AI-DS/AI-ML/IOT/DS/ECE/ME/RAI/E&CE)

Date on which assignment given: 13/08/2024 Date of submission of assignment: 28/08/2024

Course Outcomes:

Students will be able to:

CO1	Examine the convergence and divergence of sequences and series.
CO2	Apply the concept of Proper integral to find length, surface area and volume of revolution of the curves and to deal with discontinuous functions using Improper integral.
CO3	Use the concepts of partial differentiation to expand, estimate and find the extreme values of Multivariable Functions.
CO4	Evaluate area and volume of the surfaces using the concept of double and triple integration.

Bloom's Taxonomy Levels

L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, L6 - Creating

	Assignment related to COs	Bloom's Taxonomy Level	Relevance to CO No.
SECTION - A (2Marks Each)			
Q1.	Explain the concept of Implicit and Explicit functions.	L-2	CO-3
Q2.	Define Oscillatory series with an example.	L-1	CO-1

Q3.	Show that the geometric series $\sum_{n=0}^{\infty} r^n$, where r is any real number such that $ \mathbf{r} < 1$ is convergent.	L-3	CO-1
Q4.	What are the advantages and disadvantages of Lagrange's method of undetermined Multipliers?	L-2	СО-3
Q5.	Use the limit comparison test to determine whether the series $\sum (\sqrt[3]{n^3-1} - n)$ is convergent or divergent.	L-3	CO-1
	SECTION – B (4 Marks Each)		
Q6.	Test the convergence of the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \cdots \infty$, where $x > 0$	L-4	CO-1
Q7.	If $u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = -\frac{\sin u \cos 2u}{4\cos^3 u}$	L-5	CO-3
Q8.	If $u=f(r)$ where $r^2=x^2+y^2$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$	L-4	CO-3
Q9.	A rectangular box open at the top, is to have volume of 32 cubic metres. Find the dimensions of the box requiring least material for its construction.	L-5	CO-3
Q10.	Test whether the series is conditionally convergent or not $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}$	L-6	CO-1